Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-35537602

RESUMO

Abalone around the world are subject to increasing frequency of marine heatwaves, yet we have a limited understanding of how acute high temperature events impact the physiology of these commercially and ecologically important species. This study examines the impact of a 5 °C temperature increase over ambient conditions for six weeks on the metabolic rates, digestive enzyme activities in the digestive gland, and digestive efficiency of Red Abalone (Haliotis rufescens) and Paua (H. iris) on their natural diets. We test the hypothesis that abalone digestive function can keep pace with this increased metabolic demand in two separate experiments, one for each species. H. iris had higher food intake in the heat treatment. Both species had higher metabolic rates in the heat treatment with Q10 = 1.73 and Q10 = 2.46 for H. rufescens and H. iris, respectively. Apparent organic matter digestibility, protein digestibility, and carbohydrate digestibility did not differ between the heat treatment and the ambient (control) treatment in either experiment. H. rufescens exhibited higher maltase, alanine-aminopeptidase, and leucine-aminopeptidase activities in the heat treatment. Amylase, ß-glucosidase, trypsin, and alkaline phosphatase activities in the digestive gland tissue did not differ between temperature treatments. H. iris exhibited lower amylase and ß-glucosidase activities in the heat treatment, while maltase, trypsin, leucine-aminopeptidase, and alkaline phosphatase activities did not differ between treatments. We conclude that over six weeks of moderate heat stress both abalone species were able to maintain digestive function, but achieved this maintenance in species-specific ways.


Assuntos
Celulases , Gastrópodes , Fosfatase Alcalina/metabolismo , Aminopeptidases/metabolismo , Amilases/metabolismo , Animais , Celulases/metabolismo , Gastrópodes/metabolismo , Resposta ao Choque Térmico , Leucina/metabolismo , Tripsina/metabolismo , alfa-Glucosidases/metabolismo
2.
Artigo em Inglês | MEDLINE | ID: mdl-34837736

RESUMO

In the abalone and Candidatus Xenohaliotis californiensis (Ca. Xc) system, the Ca. Xc bacterium infects abalone digestive tissues and leads to extreme starvation and a characteristic "withering" of the gastropod foot. First identified in black abalone in California after an El Niño event, withering syndrome (WS) has caused large declines in wild black and captive white abalone on the northeastern Pacific coast, but disease resistance levels are species-, and possibly population-specific. This study compared gene expression patterns in the digestive gland of Ca. Xc-exposed and unexposed (control) Pinto abalone (Haliotis kamtschatkana), a particularly susceptible species. Lab-induced Ca. Xc infections were followed over 7 months and RNAseq was used to identify differential gene expression. Exposed Pinto abalone showed distinct changes in expression of 68 genes at 3 and 7 months post-infection relative to those in control animals. Upregulation of an orexin-like receptor (which is involved in feeding signaling) and a zinc peptidase-like region (many amino peptidases are zinc peptidases) in animals infected for 7 months indicates that animals with Ca. Xc infection may be starving and upregulating processes associated with feeding and digestion. Other groups of differentially expressed genes (DEGs) were upregulated or downregulated across control and exposed individuals over the 7-month experiment, including DEG groups that likely correspond to early disease state and to general stress response of being held in captivity. No patterns emerged in genes known to be involved in molluscan immune response, despite this being an expectation during a 7-month infection; digestion-related genes and unannotated DEGs were identified as targets for future research on potential immune response to WS in abalone.


Assuntos
Gastrópodes , Transcriptoma , Animais , Gastrópodes/genética , Gastrópodes/microbiologia , Zinco
3.
J Fish Biol ; 93(2): 282-289, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29956315

RESUMO

Apparent egg cannibalism was investigated in the beach-spawning California grunion Leuresthes tenuis. Three hypotheses were tested to determine whether L. tenuis regularly consumes and efficiently digests conspecific eggs. First, examination of the gut contents of adults collected at four spawning sites over two seasons showed that the intestines of most fish from all the sites (57-87%, n ≥ 30, each site) contained L. tenuis eggs. The two other hypotheses focused on digestion of the eggs. First, the force required to crush cannibalized eggs was significantly less than that for uncannibalized eggs (fertilized or unfertilized), indicating that ingestion weakens the egg chorions. Second, conspecific eggs fed to fish held in the laboratory visibly degraded as they passed through the gut. The eggs lost c. half of their protein content and about two-thirds of their lipid content as they passed from proximal to distal regions of the gut, indicating that digestion occurred. Digestive enzyme activities of the gut further confirmed that L. tenuis can break down the contents of ingested eggs. Trypsin activity decreased and aminopeptidase activity increased posteriorly along the gut, whereas amylase and lipase activities exhibited less clear patterns by gut region. As far as is known, this study is the first to show that L. tenuis is an egg cannibal.


Assuntos
Canibalismo , Digestão , Ingestão de Alimentos , Peixes , Óvulo , Animais , California , Feminino , Masculino , Estações do Ano
4.
Science ; 357(6349): 422, 2017 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-28751612
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...